Some multidimensional integrals related to many-body systems with the $1 / r^{2}$ potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L607
(http://iopscience.iop.org/0305-4470/25/10/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Some multidimensional integrals related to many-body systems with the $1 / r^{2}$ potential

P J Forrester
Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia

Received 4 February 1992

Abstract

An N-dimensional integral evaluated by K Aomoto is shown to represent the density matrix for an impurity particle in the $1 / r^{2}$ quantum many-body problem on a line. The value of the N-dimensional integral representing the same density matrix in periodic boundary conditions is conjectured, as is the value of an N-dimensional integral which represents a two-point correlation function in the system. Also, the partition function of a related classical Hamiltonian is evaluated by formulating a conjecture which asserts that the sum of Jacobians of a certain change of variables in N -dimensions is a constant.

Aomoto [1] has recently obtained a closed form evaluation of some two-point correlations with respect to the measure

$$
\begin{equation*}
\left(p_{1, \lambda}\left(x_{1}, x_{2}, \ldots, x_{N}\right)\right)^{2} \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{N} \tag{1a}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{a, \lambda}=\exp \left(-\frac{a}{4}\left(x_{1}^{2}+\ldots+x_{N}^{2}\right)\right) \prod_{1 \leqslant j<k \leqslant N}\left|x_{k}-x_{j}\right|^{\lambda / 2} \tag{1b}
\end{equation*}
$$

In particular, the correlation
$f\left(y_{1}, y_{2}\right)=\left(\prod_{\ell=1}^{N} \int_{-\infty}^{\infty} \mathrm{d} x_{\ell}\left(y_{1}-x_{\ell}\right)\left(y_{2}-x_{\ell}\right)\right)\left(p_{1, \lambda}\left(x_{1}, \ldots, x_{N}\right)\right)^{2}$
was evaluated, and the corresponding asymptotic formula for $f\left(\xi_{1} / \sqrt{2 N}, \xi_{2} / \sqrt{2 N}\right)$ given in the large- N limit with ξ_{1} and ξ_{2} fixed. In this letter we will provide a physical interpretation of (2) in terms of the one-point density matrix of a certain manybody quantum system, and use the asymptotic formula to obtain the corresponding momentum distribution. The value of the N-dimensional integral representing the same density matrix in periodic boundary conditions is conjectured, as is the value of another N-dimensional integral which represents a two-point correlation function in the system. In addition, we consider the classical partition function of a system related to the quantum Hamiltonian and obtain its evaluation by using a conjectured identity regarding a change of variables in N -dimensions.

We begin with the following observation:

Proposition 1. The function

$$
\begin{equation*}
\psi_{a, \lambda}\left(y ; x_{1}, \ldots, x_{N}\right)=\exp \left(-a y^{2} / 2 \lambda\right) \prod_{\ell=1}^{N}\left(y-x_{\ell}\right) p_{a, \lambda}\left(x_{1}, \ldots, x_{N}\right) \tag{3}
\end{equation*}
$$

is an exact wavefunction for the Hamiltonian

$$
\begin{gather*}
H=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial\left(x_{j}\right)^{2}}-\frac{\lambda}{2} \frac{\partial^{2}}{\partial y^{2}}+a^{2} / 4 \sum_{j=1}^{N}\left(x_{j}\right)^{2}+\left(a^{2} / 2 \lambda\right) y^{2} \\
+g \sum_{1 \leqslant j<k \leqslant N} \frac{1}{\left(x_{k}-x_{j}\right)^{2}} \tag{4}
\end{gather*}
$$

where λ and g are related by

$$
\begin{equation*}
\lambda=1+(1+2 g)^{\frac{1}{2}} . \tag{5}
\end{equation*}
$$

This system corresponds to identical quantum particles with coordinates x_{1}, \ldots, x_{N} in a harmonic well interacting via a $1 / r^{2}$ pair potential, and a single impurity particle with coordinate y also in a harmonic well (of different strength) which does not interact with the other particles. The mass of the impurity particle to the other particles is in the ratio $(\lambda / 2): 1$.

Proposition 1 is a special case of a more general result for an exact wavefunction of the t-species Hamiltonian

$$
\begin{align*}
H_{t}=-\sum_{\alpha=1}^{t} & \frac{1}{m_{\alpha}} \sum_{j=1}^{N_{\alpha}} \frac{\partial^{2}}{\partial\left(x_{j}^{(\alpha)}\right)^{2}}+\sum_{\alpha=1}^{t} g_{\alpha} \sum_{1 \leqslant j<k \leqslant N_{\alpha}} \frac{1}{\left|x_{k}^{(\alpha)}-x_{j}^{(\alpha)}\right|^{2}} \\
& +\sum_{1 \leqslant \alpha<\beta \leqslant t} g_{\alpha \beta} \sum_{j=1}^{N_{\alpha}} \sum_{k=1}^{N_{\beta}} \frac{1}{\left|x_{j}^{(\alpha)}-x_{k}^{(\beta)}\right|^{2}}+a^{2} \sum_{\alpha=1}^{t} m_{\alpha} \sum_{j=1}^{N_{\alpha}}\left(x_{j}^{(\alpha)}\right)^{2} \tag{6}
\end{align*}
$$

Theorem 1. The function

$$
\begin{equation*}
\exp \left[-\frac{a}{2} \sum_{\alpha=1}^{t} m_{\alpha} \sum_{j=1}^{N_{\alpha}}\left(x_{j}^{(\alpha)}\right)^{2}\right] \prod_{\alpha=1}^{t} D\left(x^{(\alpha)}\right) \prod_{1 \leqslant \alpha<\beta \leqslant t} D\left(x^{(\beta)}, x^{(\alpha)}\right) \tag{7a}
\end{equation*}
$$

where

$$
\begin{equation*}
D\left(x^{(\alpha)}\right)=\prod_{1 \leqslant j<k \leqslant N_{\alpha}}\left|x_{k}^{(\alpha)}-x_{j}^{(\alpha)}\right|^{\left(m_{\alpha}\right)^{2}} \tag{7b}
\end{equation*}
$$

and

$$
\begin{equation*}
D\left(x^{(\beta)}, x^{(\alpha)}\right)=\prod_{j=1}^{N_{\beta}} \prod_{k=1}^{N_{\alpha}}\left|x_{k}^{(\alpha)}-x_{j}^{(\beta)}\right|^{m_{a} m_{\beta}} \tag{7c}
\end{equation*}
$$

is an exact wavefunction of the Hamiltonian (6) provided

$$
\begin{equation*}
g_{\alpha}=2 m_{\alpha}\left(m_{\alpha}^{2}-1\right) \quad \text { and } \quad g_{\alpha \beta}=\left(m_{\alpha}+m_{\beta}\right)\left(m_{\alpha} m_{\beta}-1\right) . \tag{8}
\end{equation*}
$$

Remarks. (1) As presented (7) corresponds to the ground state wavefunction since it is nodeless for finite values of the potential. However, for $m_{\alpha} m_{\beta}$ odd the absolute value signs can be removed and (7) still satisfies the Schrödinger equation with Hamiltonian (6) (proposition 1 is of this type). The wavefunction no longer corresponds to the ground state.
(2) An exact wavefunction corresponding to the periodic version of (6) has been given by Krivnov and Ovchinnikov [2] (see also [3]).

The key to theorem 1 is the identity [4]

$$
\begin{equation*}
\frac{1}{(x-y)(x-z)}+\frac{1}{(y-x)(y-z)}+\frac{1}{(z-x)(z-y)}=0 \tag{9}
\end{equation*}
$$

which shows that the apparent three-body terms which result from applying the kinetic energy operator of (6) to (3) cancel. We find that the energy eigenvalue corresponding to the wavefunction (7) is

$$
\begin{equation*}
a\left[\sum_{\alpha=1}^{t} N_{\alpha}+\sum_{\alpha=1}^{t}\left(q_{\alpha}\right)^{2} N_{\alpha}\left(N_{\alpha}-1\right)+\sum_{\substack{\alpha=1, \gamma=1 \\ \alpha \neq \gamma}}^{t} q_{\alpha} q_{\gamma} N_{\alpha} N_{\gamma}\right] \tag{10}
\end{equation*}
$$

In the thermodynamic limit the one-particle density matrix $\rho\left(y_{1}, y_{2}\right)$ for the impurity particle of the Hamiltonian (4) in the state (3) is defined as
$\rho\left(y_{1}, y_{2}\right)=\lim _{N \rightarrow \infty} \frac{\prod_{\ell=1}^{N} \int_{-\infty}^{\infty} \mathrm{d} x_{\ell} \psi_{a, \lambda}\left(y_{1} ; x_{1}, \ldots, x_{N}\right) \psi_{a, \lambda}\left(y_{2} ; x_{1}, \ldots, x_{N}\right)}{\prod_{\ell=1}^{N} \int_{-\infty}^{\infty} \mathrm{d} x_{\ell}\left(\psi_{a, \lambda}\left(y_{1} ; x_{1}, \ldots, x_{N}\right)\right)^{2}}$
where the normalization has been chosen so that $\rho(y, y)=1$. In the thermodynamic limit we require the identical particles to tend to a finite density, η say. This can be achieved [5, equation (21)] by choosing

$$
\begin{equation*}
a=\lambda(\pi \eta)^{2} / 2 N \tag{12}
\end{equation*}
$$

Changing variables $\sqrt{a} x_{\ell}=X_{\ell}$ in (11) and use of (12) and the definitions (3) and (2) gives

$$
\begin{align*}
\rho\left(y_{1}, y_{2}\right)= & \lim _{N \rightarrow \infty} f\left(\sqrt{\lambda / 2 N} \pi \eta y_{1},\right. \\
& \left.\sqrt{\lambda / 2 N} \pi \eta y_{2}\right) / f\left(\sqrt{\lambda / 2 N} \pi \eta y_{1}, \sqrt{\lambda / 2 N} \pi \eta y_{1}\right) \tag{13}
\end{align*}
$$

The value of (13) can be read off from Aomoto's result [1, theorem of section 4]. We thus obtain

$$
\begin{equation*}
\rho\left(y_{1}, y_{2}\right)=c_{\lambda} \frac{J_{(2 / \lambda)-1 / 2}\left(\pi \eta\left(y_{1}-y_{2}\right)\right)}{\left[\pi \eta\left(y_{1}-y_{2}\right)\right]^{(2 / \lambda)-1 / 2}} \tag{14a}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\lambda}=2^{(2 / \lambda)-1 / 2} \Gamma((2 / \lambda)+1 / 2) \tag{14b}
\end{equation*}
$$

and $J_{p}(x)$ denotes the Bessel function of order p and $\Gamma(x)$ denotes the gamma function. The momentum distribution function $n(k)$ is obtained by taking the Fourier cosine transform of $\rho\left(y_{1}, y_{2}\right)=\rho\left(y_{1}-y_{2}\right)$. We find [6]

$$
n(k)= \begin{cases}A_{\lambda} \frac{1}{\pi \eta}\left(1-(k / \pi \eta)^{2}\right)^{2 / \lambda-1} & |k|<\pi \eta \tag{15a}\\ 0 & |k|>\pi \eta\end{cases}
$$

where

$$
\begin{equation*}
A_{\lambda}=2 \pi^{1 / 2} \frac{\Gamma(2 / \lambda+1 / 2)}{\Gamma(2 / \lambda)} \tag{15b}
\end{equation*}
$$

Thus the momentum of the impurity particle lies inside the first Brillouin zone with peaks as $|k| \rightarrow \pi \eta$ for $\lambda>2$ (i.e., from (5), $g>0$) and at $k=0$ for $\lambda<2$ (i.e. $g<0$). In the special case $\lambda=2$ the impurity particle becomes indistinguishable from the other particles. The density matrix (14) is then that of non-interacting fermions in one-dimension and (15) gives the correct Fermi surface.

Let us now consider the periodic version of the Hamiltonian (4):

$$
\begin{equation*}
H=-\sum_{j=1}^{N} \frac{\partial^{2}}{\partial\left(x_{j}\right)^{2}}-\frac{\lambda}{2} \frac{\partial^{2}}{\partial y^{2}}+\left(\frac{\pi}{L}\right)^{2} g \sum_{1 \leqslant j<k \leqslant N}\left(\frac{1}{\sin \pi\left(x_{k}-x_{j}\right) / L}\right)^{2} \tag{16}
\end{equation*}
$$

From [2] we know that

$$
\begin{equation*}
\phi_{\lambda}\left(y ; x_{1}, \ldots, x_{N}\right)=\prod_{j=1}^{N} \sin \pi\left(y-x_{j}\right) / L \prod_{1 \leqslant j<k \leqslant N}\left|\sin \pi\left(x_{k}-x_{j}\right) / L\right|^{\lambda / 2} \tag{17}
\end{equation*}
$$

is an exact wavefunction of (16) provided λ is given by (5). The density matrix for the impurity particle in the state (17) is proportional to the integral

$$
\begin{align*}
g\left(y_{1}, y_{2}\right)=(& \left.\prod_{\ell=1}^{N} \int_{0}^{L} \mathrm{~d} x_{\ell} \sin \pi\left(y_{1}-x_{\ell}\right) / L \sin \pi\left(y_{2}-x_{\ell}\right) / L\right) \\
& \times \prod_{1 \leqslant j<k \leqslant N}\left|\sin \pi\left(x_{k}-x_{j}\right) / L\right|^{\lambda} . \tag{18}
\end{align*}
$$

For $\lambda=2 \gamma, \gamma$ a positive integer, it is straightforward to express $g\left(y_{1}, y_{2}\right)$ in terms of

$$
\begin{equation*}
G_{\gamma}\left(Y_{1}, Y_{2}\right)=C T_{\left\{X_{1}, \ldots, x_{N}\right\}} \prod_{\ell=1}^{N}\left(1-\frac{Y_{1}}{X_{\ell}}\right)\left(1-\frac{X_{\ell}}{Y_{2}}\right)_{j, k=1, j \neq k} \prod_{k}^{N}\left(1-\frac{X_{j}}{X_{k}}\right)^{\gamma} \tag{19}
\end{equation*}
$$

where $C T_{\left\{X_{1}, \ldots, X_{N}\right\}}$ denotes the 'constant term' with respect to $\left\{X_{1}, \ldots, X_{N}\right\}$ (i.e. terms independent of $\left\{X_{1}, \ldots, X_{N}\right\}$) in the multivariable Laurent expansion of the products. Using the van der Monde determinant expansion it is easy to show that

$$
\begin{equation*}
G_{1}\left(Y_{1}, Y_{2}\right)=N!\sum_{k=0}^{N}\left(\frac{Y_{1}}{Y_{2}}\right)^{k} \tag{20}
\end{equation*}
$$

On the basis of (20) and exact numerical data for small N we propose the following exact evaluation of (19) for general $\gamma \in \mathbb{Z}^{+}$.

Conjecture 1.

$$
\begin{align*}
G_{\gamma}\left(Y_{1}, Y_{2}\right)= & c_{\gamma} \sum_{k=0}^{N} \frac{(-N)_{k}(1 / \gamma)_{k}}{k!(-N-1 / \gamma+1)_{k}}\left(\frac{Y_{1}}{Y_{2}}\right)^{k} \\
& =c_{\gamma} \quad{ }_{2} F_{1}\left(-N, 1 / \gamma ;-N-1 / \gamma+1 ; Y_{1} / Y_{2}\right) \tag{21}
\end{align*}
$$

where

$$
\begin{equation*}
c_{\gamma}=(\gamma N)!/(\gamma!)^{N} \tag{22}
\end{equation*}
$$

and ${ }_{2} F_{1}(a, b ; c ; x)$ denotes the hypergeometric function of Gauss.
Remarks. (1) The value of c_{γ} is given by the so-called Dyson conjecture [7].
(2) The conjecture (21) is a reciprocal polynomial in Y_{1} / Y_{2}, which is required from the definition (19).
(3) With $Y_{1}=Y_{2}$ the hypergeometric function in (21) can be evaluated to give

$$
\begin{equation*}
G_{\gamma}(Y, Y)=c_{\gamma} \frac{(-N-1 / \gamma)_{N}}{(-N-2 / \gamma)_{N}} \tag{23}
\end{equation*}
$$

In this case the constant term in (19) can be taken with respect to all variables. Its value can be obtained from a special case of a theorem of Morris [8]; see also [9-12], giving agreement with (23).

It is also possible to formulate a conjecture which allows the particle density about the impurity for the state given by the wavefunction (17), with λ an even positive integer, to be calculated. By definition, if the impurity particle is at point y, then the density at point $x, \mathrm{~d}(x-y)$ say, is given by

$$
\begin{align*}
\mathrm{d}(x-y)= & N\left(\prod_{\ell=2}^{N} \int_{0}^{L} \mathrm{~d} x_{\ell}\right)\left(\phi_{\lambda}\left(y ; x, x_{2}, \ldots, x_{N}\right)^{2}\right. \\
& \times\left[\left(\prod_{\ell=1}^{N} \int_{0}^{L} \mathrm{~d} x_{\ell}\right)\left(\phi_{\lambda}\left(y ; x_{1}, \ldots, x_{N}\right)\right)^{2}\right]^{-1} \tag{24}
\end{align*}
$$

To calculate (24) with $\lambda=2 \gamma, \gamma \in \mathbb{Z}^{+}$it suffices to calculate

$$
\begin{equation*}
D_{\gamma, N}\left(Y, X_{1}\right)=C T_{\left\{X_{2}, \ldots, X_{N}\right\}} \prod_{\ell=1}^{N}\left(1-\frac{Y}{X_{\ell}}\right)\left(1-\frac{X_{\ell}}{Y}\right)_{j, k=1, j \neq k}^{N}\left(1-\frac{X_{j}}{X_{k}}\right)^{\gamma} \tag{25}
\end{equation*}
$$

By using determinant expansions $D_{1, N}$ and $D_{2, N}$ can readily be evaluated, as too can $D_{\gamma, 2}$. Furthermore, the constant term with respect to all variables in (25) follows from Morris's theorem [8]. On the basis of these exact results and some exact numerical data we propose the following result:

Conjecture 2. For $\gamma \in \mathbb{Z}^{+}$,

$$
\begin{align*}
D_{\gamma, N}(Y, X)= & d_{\gamma, N}\left\{1+2 /(N \gamma)-\frac{1}{N \gamma}\left[2 F_{1}(-N, 1 ; 1-N-2 / \gamma ; Y / X)\right.\right. \\
& \left.\left.+{ }_{2} F_{1}(-N, 1 ; 1-N-2 / \gamma ; X / Y)\right]\right\} \tag{26}
\end{align*}
$$

where

$$
\begin{equation*}
d_{\gamma, N}=\frac{((N-1) \gamma)!(2 / \gamma)_{N-1}}{(\gamma!)^{N}(1 / \gamma)_{N-1}} . \tag{27}
\end{equation*}
$$

Finally, let us consider a multi-species classical gas with potential energy closely related to the Hamiltonian (6). The gas has potential energy

$$
\begin{align*}
& V_{t}=a^{2} \sum_{\alpha=1}^{t} m_{\alpha} \sum_{p=1}^{N_{\alpha}}\left(x_{p}^{(\alpha)}\right)^{2}+2 \sum_{\alpha=1}^{t}\left(m_{\alpha}\right)^{3} \sum_{1 \leqslant p<j \leqslant N_{\alpha}} \frac{1}{\left(x_{p}^{(\alpha)}-x_{j}^{(\alpha)}\right)^{2}} \\
&+2 \sum_{1 \leqslant \alpha<\gamma \leqslant t} \sum_{p=1}^{N_{\alpha}} \sum_{j=1}^{N_{\gamma}} \frac{m_{\alpha} m_{\gamma}\left(m_{\alpha}+m_{\gamma}\right)}{\left(x_{p}^{(\alpha)}-x_{j}^{(\gamma)}\right)^{2}} . \tag{28}
\end{align*}
$$

This potential energy is derived by expanding

$$
\begin{equation*}
U_{t}=\sum_{\alpha=1}^{t} \frac{1}{m_{\alpha}} \sum_{p=1}^{N_{\alpha}}\left(u_{\alpha, p}\right)^{2} \tag{29a}
\end{equation*}
$$

where
$u_{\alpha, p}=a m_{\alpha} x_{p}^{(\alpha)}-\sum_{j=1, j \neq p}^{N_{\alpha}} \frac{\left(m_{\alpha}\right)^{2}}{x_{p}^{(\alpha)}-x_{j}^{(\alpha)}}-\sum_{\gamma=1, \gamma \neq \alpha}^{t} \sum_{j=1}^{N_{k}} \frac{m_{\alpha} m_{\gamma}}{x_{p}^{(\alpha)}-x_{j}^{(\gamma)}}$
which is one of the steps required in the proof of theorem 1. Use of (9) and some further manipulation gives
$U_{t}=V_{t}-a\left[\sum_{\alpha=1}^{t}\left(m_{\alpha}\right)^{2} N_{\alpha}\left(N_{\alpha}-1\right)-2 \sum_{1 \leqslant \alpha<\gamma \leqslant t} m_{\alpha} m_{\gamma} N_{\alpha} N_{\gamma}\right]$.
We desire to evaluate the classical partition function

$$
\begin{equation*}
Z_{t}=\left(\prod_{\alpha=1}^{t} \prod_{p=1}^{N_{\alpha}} \int_{-\infty}^{\infty} \mathrm{d} x_{p}^{(\alpha)}\right) \mathrm{e}^{-V_{t} / 2} . \tag{31}
\end{equation*}
$$

The value of Z_{t} can be obtained from the following conjecture:

Conjecture 3. (Special cases of this conjecture have been formulated independently by Glasser [13].) Let

$$
\begin{equation*}
w_{j}=a_{j j} x_{j}-\sum_{k=1, k \neq j}^{N} \frac{a_{j k}}{x_{j}-x_{k}}-\sum_{\ell=1}^{M} \frac{b_{j \ell}}{x_{j}-c_{j \ell}} \tag{32}
\end{equation*}
$$

where
$a_{j j}>0, \quad a_{j k} \geqslant 0, \quad b_{j \ell} \geqslant 0, \quad c_{j \ell} \in \mathbb{R}, \quad j, k=1, \ldots, N ; \quad \ell=1, \ldots, M$.
Then for any integral function f and any parameters satisfying (33),

$$
\begin{align*}
& \left(\prod_{j=1}^{N} \int_{-\infty}^{\infty} \mathrm{d} x_{j}\right) f\left(w_{1}, w_{2}, \ldots, w_{N}\right) \\
& \quad=\left(\prod_{j=1}^{N} \frac{1}{a_{j j}} \int_{-\infty}^{\infty} d w_{j}\right) f\left(w_{1}, w_{2}, \ldots, w_{N}\right) \tag{34}
\end{align*}
$$

The conjecture (34) is true for $N=1$ (see e.g. [14], although the result goes back to at least Boole [15] in the last century) and can easily be verified when $N=2$ and $M=0$. For the particular function

$$
\begin{equation*}
f\left(w_{1}, \ldots, w_{N}\right)=\prod_{j=1}^{N} e^{-\left(w_{j}\right)^{2} / 2} \tag{35}
\end{equation*}
$$

with

$$
\begin{equation*}
M=0, \quad a_{j j}=a \quad \text { and } \quad a_{j k}=g, \quad j \neq k, \quad j, k=1, \ldots, N \tag{36}
\end{equation*}
$$

the conjecture gives

$$
\begin{align*}
& \left(\prod_{\ell=1}^{N} \int_{-\infty}^{\infty} \mathrm{d} x_{\ell}\right) \exp \left(-\frac{a^{2}}{2} \sum_{j=1}^{N}\left(x_{j}\right)^{2}-g^{2} \sum_{1 \leqslant j<k \leqslant N} \frac{1}{\left(x_{k}-x_{j}\right)^{2}}\right) \\
& =\left(\frac{2 \pi}{a^{2}}\right)^{N / 2} e^{-a g N(N-1) / 2} \tag{37}
\end{align*}
$$

which is a known result [16]. Furthermore, we have used Monte Carlo integration to verify (34), up to numerical error of 0.1%, with f given by (35) for $(N, M)=(3,0)$ and $(2,1)$ with various values of the parameters (33).

To evaluate (31), consider the conjecture with f given by (35) and

$$
\begin{align*}
& M=0, N=\sum_{\alpha=1}^{t} N_{\alpha} \\
& a_{(\alpha-1) N_{\alpha}+k_{\alpha},(\beta-1) N_{\beta}+k_{\beta}}= \begin{cases}a m_{\alpha}^{1 / 2} & \left(\alpha, k_{\alpha}\right)=\left(\beta, k_{\beta}\right) \\
m_{\alpha}^{1 / 2} m_{\beta} & \left(\alpha, k_{\alpha}\right) \neq\left(\beta, k_{\beta}\right)\end{cases} \tag{38}
\end{align*}
$$

where $\alpha, \beta=1, \ldots, t$ and $k_{\alpha}=1, \ldots, N_{\alpha}$. Use of (30) then gives

$$
\begin{gather*}
Z_{t}=\left(\prod_{\ell=1}^{t}\left(\frac{2 \pi}{a^{2} m_{\ell}}\right)^{N_{\ell} / 2}\right) \exp \left\{-\frac{a}{2}\left[\sum_{\alpha=1}^{t}\left(m_{\alpha}\right)^{2} N_{\alpha}\left(N_{\alpha}-1\right)\right.\right. \\
\left.\left.-\sum_{1 \leqslant \alpha<\beta \leqslant t} m_{\alpha} m_{\beta} N_{\alpha} N_{\beta}\right]\right\} \tag{39}
\end{gather*}
$$

I thank K Aomoto for sending me a copy of [1] and Doron Zeilberger for the time spent studying the original version of this letter, which led to a counterexample of the original form of conjecture 2 I acknowledge support by the Australian Research Council.

Note added. Conjecture 1 has now been proved by Zeilberger [17] and by the present author [18].
In [18], the factor $\prod_{\ell=1}^{N}\left(1-Y_{1} / X_{\ell}\right)\left(1-X_{\ell} / Y_{2}\right)$ of the rational function in the constant term (19) is generalized to $\prod_{\ell=1}^{N}\left(1-Y_{1} / X_{\ell}\right)\left(1-X_{\ell} / Y_{2}\right)\left(1-Y_{3} / X_{\ell}\right) \ldots\left(1-X_{\ell} / Y_{m}\right)$ and the constant term is given in terms of a generalized hypergeometric function involving Jack symmetric polynomials. Furthermore, an alternative expression for the constant term (26) in Conjecture 2 is derived. These results are all obtained as limiting cases of the evaluations of the Selberg correlation integrals given ty Kaneko [19].

Conjecture 3 has now been proved by Aomoto, with the restriction $a_{j k}=a_{k j}$ in (33).

References

[1] Aomoto K 1988 Conformal field theory and solvable lattice models Adv: Stud. Pure Math. 161
[2] Krivnov V Ya and Ovchinnikov A A 1982 Theor. Math. Phys. 50100
[3] Forrester P J 1984 J. Phys. A: Math. Gen. 172059
[4] Sutherland B 1971 Phys. Rev. A 42019
[5] Sutherland B 1971 J. Math. Phys. 12246
[6] Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1954 Tables of Integral Transforms vol 1 (New York: McGraw-Hill)
[7] Dyson F J 1962 J. Math. Phys. 3140
[8] Morris W G 1982 Constant term identities for finite and affine root systems PhD thesis University of Wisconsin, Madison
[9] Kadell K 1988 SLAM J. Math Anal 19969
[10] Habsieger L 1988 SLAM J. Math. Anal 191475
[11] Zeilberger D 1990 Discrete Math 79313
[12] Gustafson R A 1990 Bull Am Math Soc. 2297
[13] Glasser M L private communication
[14] Glasser M L 1983 Math of Comput 40561
[15] Boole G 1857 Phil Trans. R Soc. 147745
[16] Gallavotti G and Marchioro C 1973 J. Math. Anal Appl 44661
[17] Zeilberger D 1992 Proof of a constant term identity conjectured by Forrester J. Comb. Theory A submitted
[18] Forrester P J 1992 Selberg correlation integrals and the $1 / r^{2}$ quantum many-body system Nucl. Fhys. B submitted
[19] Kaneko J 1992 Selberg integrals and hypergeometric functions associated with Jack polynomials SLAM J. Math Analysis submitted

