IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Some multidimensional integrals related to many-body systems with the 1/r2 potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L607
(http://iopscience.iop.org/0305-4470/25/10/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:27

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math, Gen. 25 (1992) L607-L614. Printed in the UK

LETTER TO THE EDITOR

Some multidimensional integrals related to
many-body systems with the 1/r* potential

P J Forrester
Department of Mathematics, La Trobe University, Bundoora, Victoria 3083, Australia

Received 4 February 1992

Abstract. An N-dimensional integral evaluated by K Aomoto is shown to represent the
density mawrix for an impurity particle in the 1/7% quantum many-body problem on a line.
The value of the N-dimensional integral representing the same density matrix in periodic
boundary conditions is conjectured, as is the value of an N-dimensional integral which
tepresents a two-point correlation function in the system. Also, the partition function
of a related classical Hamiltonian is evaluated by formulating a conjecture which asserts
that the sum of Jacobians of a certain change of variables in N-dimensions is a constant.

Aomoto [1] has recently obtained a closed form evaluation of some two-point corre-
lations with respect to the measure

(pra(z1r @y, yzy))Pday ... dey (1a)

where

a
Pg,) = €Xp (—Z(x%"'---‘l‘”?fv)) | A (1b)
1< <KEN

In particuiar, the correlation

HE I (glj/-o; de,(y; — x )y - J’z)> (pl,,\(‘nla e .sl‘N))z (2)

was evaluated, and the corresponding asymptotic formula for f(&,/V2N,&,//2ZN)
given in the large- NV limit with £, and &, fixed. In this letter we will provide a physical
interpretation of (2) in terms of the one-point density matrix of a certain many-
body quantum system, and use the asymptotic formula to obtain the corresponding
momentum distribution. The value of the N-dimensional integral representing the
same density matrix in periodic boundary conditions is conjectured, as is the value
of another N-dimensiona! integral which represents a two-point correlation function
in the system. In addition, we consider the classical partition function of a system
related to the quantum Hamiltonian and obtain its evaluation by using a conjectured
identity regarding a change of variables in N-dimensions.
We begin with the following observation:
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Proposition 1. The function

N
ber(i T, 2n) = exp(=ay?/23) [[(w - 20pu a(21s 1 2n) 6
=1

is an exact wavefunction for the Hamiltonian

A T A 92 214 2 2 2
H=~§m-58—y,+a /4j§_jl(m,-) + (d*/2))y

1
+g 19;30 AR @
where A and g are related by
A=1+(1+29)}. 5)
This system corresponds to identical quantum parncles with coordinates
€y,..., 2, in a harmonic well interacting via a 1/r? pair potential, and a single

unpunty particle with coordinate y also in a harmonic well (of different strength)
which does not interact with the other particles. The mass of the impurity particle to
the other particles is in the ratio (A/2) : 1.

Proposition 1 is a special case of a more general result for an exact wavefunction
of the t-species Hamiltonian

L1 1
Z m, z ‘3w (a))z + Z fa D2 @ O

a=1 1Ii<kg Ny (£

Ns Ng 1 Na
2 (a)y2
+ D D3 m moT +a2y m, S ()
1€a<c At j=lk= 1| | a=1 i=1

Theorem 1. The function

o[- 23 m. 3 ik H D) [I Da®,®) 7a)

a=1 j=t I€a gt
where
o m. )
D(I(o‘)) = H Iw.(k ) w;"')l( a) (7b)
1€ <k g N,
and
Npg N,
D(z®,2)y = T] [] laf - «{?|meme (7c)
j=lk=1

is an exact wavefunction of the Hamiltonian (6) provided

. =2m,(m2 — 1) and Gop = (Mg + mg)(moymg — 1), 8)
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Remarks. (1) As presented (7) corresponds to the ground state wavefunction since
it is nodeless for finite values of the potential. However, for m ,mg odd the absolute
value signs can be removed and (7) still satisfies the Schrodinger equation with Hamil-
tonian (6) (proposition 1 is of this type). The wavefunction no longer corresponds to
the ground state.

(2) An exact wavefunction corresponding to the periodic version of (6) has been given
by Krivnov and Ovchinnikov [2] (see also [3]).

The key to theorem 1 is the identity [4]

1 1 1
+ + =
(z-y)z-2)  (y-—=x}y-2) (z-=z)(z-v)
which shows that the apparent three-body terms which result from applying the kinetic

energy operator of (6) to (3) cancel. We find that the energy eigenvalue corresponding
to the wavefunction (7) is

0 )

t 1 t
a[ZNa+Z(qa)2Na(Na—1)+ > qanNaNy]. (10)
ac=l =1 w=1,y=1
afy

In the thermodynamic limit the one-particle density matrix p(y,,y,) for the im-
purity particle of the Hamiltonian (4} in the state (3) is defined as

N
[l ffooo dx£¢a,)«(yl; Tpse - s“’N)wa,A(yz; TyseeeaEpy)
N
Hz=1 f.c.'ooo dxc(wa,,\(yﬁ-’ﬂu se s v’"N))2
where the normalization has been chosen so that p{y,y) = 1. In the thermodynamic

limit we require the identical particles to tend to a finite density, n say. This can be
achieved {3, equation (21)] by choosing

(n

= i
o1 42) im

a = A(wn)?/2N. (12

Changing variables v/ez, = X, in (11) and use of (12) and the definitions (3)
and (2) gives

Plunyr) = lim f(VA[2N 7y,
VAN Ty [ F(VAZN Ty, VA 2N wny ). (13)

The value of (13) can be read off from Aomoto’s result [1, theorem of section 4).
We thus obtain

_Jayny-p(mnln - )
Py, ) = ¢ [rn(y; — y)]&M-172

(144)

where

ey = 2202/ X) +1/2) (14b)
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and J,(z) denotes the Bessel function of order p and I'(z) denotes the gamma
function. The momentum distribution function n(k) is obtained by taking the Fourier
cosine transform of p(yy, v,) = oy — ¥;). We find [6)

AyL(1— (kfmn)hy/r-1 k
n(iy = [ A7 = Ce/Tn)) [kl < 77 (150)
0 k| > nn
where
A, = zwllzw_ (15b)

T(2/ )

Thus the momentum of the impurity particle lies inside the first Brillouin zone
with peaks as |k| — =mn for A > 2 (ie, from (5), g > ®) and at k =0 for A < 2 (i.c.
g < 0). In the special case A = 2 the impurity particle becomes indistinguishable
from the other particles. The density matrix (14) is then that of non-interacting
fermions in one-dimension and (135) gives the correct Fermi surface,

Let us now consider the periodic version of the Hamiltonian (4):

N

8t A 82 r\’ 1 z
H:-E 3(mj)2_ Ea_sz“ (f) g Z (sini‘r(:ck—:cj)/L) ' (16)

IS5 <kgN

From [2] we know that

N
x(v; ﬂ’p-uaxN)“—'HSinW(y“ﬂ?j)/L H 1sin1r(rk—w,-)/Ll"” (17)
j=1 1<k N

is an exact wavefunction of (16) provided A is given by (5). The density matrix for
the impurity particle in the state {17) is proportional to the integral

N oL
snv) = ([T [ dessinnton -/ Lsinnlso - 20)/L)
=1
X H [sinﬂ(zk—xj)/L]*. (18)

1< <kgN

For A = 24, v a positive integer, it is straightforward to express g(y,y,) in
terms of

N N
Y, X X\
G, (Y;,Y,) = CT, ||(—_L)(1-—J—) [] (——-’—) (19)
MESITRS) {X{yr, XN}
X} L X, Vol i ootk X,

where CT|y, . denotes the ‘constant term’ with respect to {X,,..., Xy} (ie.
terms independent of {X,,..., X }) in the multivariable Laurent expansion of the
products. Using the van der Monde determinant expansion it is easy to show that

N Y, k
Gh =My () 20)
k=0

On the basis of (20) and exact numerical data for small NV we propose the following
exact evaluation of (19) for general v € Z*.
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Conjecture 1.

N),(1 AN
G (},]!Y'Z)—quk.l(( )k( /'Y)k (?i)

N-1/v+1),
=c, Fi(~N,1/vi-N-1/4v+1Y|/Y;) (21)
where
c, = (v N/ ()Y (22)

and , Fy(a, b; ¢c; ) denotes the hypergeometric function of Gauss.

Remarks. (1) The value of ¢, is given by the so-called Dyson conjecture [7}.

(2) The conjecture (21) is a reciprocal polynomial in Y;/Y,, which is required from
the definition (19).

(3) With Y; = Y, the hypergeometric function in (21) can be evaluated to give

_ . &Ny
G, (Y,Y)= N 2N (23)

In this case the constant term in (19) can be taken with respect to all variables. Its
value can be obtained from a special case of a theorem of Morris [8]; sec also [9-12],
giving agreement with (23).

It is also possible to formulate a conjecture which allows the particle density about
the impurity for the state given by the wavefunction (17), with A an even positive
integer, to be calculated. By definition, if the impurity particle is at point y, then the
density at point =, d(z — y) say, is given by

diz—-y) = N(ﬁ/: da:t)(qbk(y;:c,;cz,...,wN)z
=2

X [(ﬂf; da:t)(qﬁ)‘(y; Ty, ,a:N))z]_l. (24)

To calculate (24) with A =2+, v € Z* it suffices to calculate

Dot =T a1 (1- ) (- %) T (1-22)" 9

Jik=1j#k

By using determinant expansions D, n and D, 5 can readily be evaluated, as too can
D., ,. Furthermore, the constant term with respect to all variables in (25) follows from
Morns s theorem {8]. On the basis of these exact results and some exact numerical
data we propose the following result:
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Conjecture 2. For v € Z+,
1
D'y,N(Y!X) = d’y,N{l +2/(N~) - m[zﬂ(—Na L1-N-2/vY/X)
+2F(-N 151 = N =2/ X/))} (26)

where

(N =D/ v)n_ y
N = TGN (U @7

Finally, let us consider a multi-species classical gas with potential energy closely
related to the Hamiltonian (6). The gas has potential energy

t N, t
V, = azzma 2(;1;§1«z))2+22:(m¢,r z "—‘( Ta) . (a)),_
a=1 p=1 = j

1€p<j€{Na

mom, (m, + m.)

Ifa<ygtp=15=1

This potential energy is derived by expanding

L )2
Z —~ z (29a)
a=1 p=1
where
Na
_ (@) _ _(ma)?
Uap = M Ty . Z o) _ (a) Z Z w(a) _ (‘r) (29%)
i=lizp TP y=lLy#e j=1 P

which is one of the steps required in the proof of theorem 1. Use of (9) and some
further manipulation gives

1
U, = a[Z(ma)zNa(Na—l)—Z > mam,vNaN,Y]. (30)
a=1 1€a <yt
We desire to evaluate the classical partition function
(H I1 / w‘“)) T, (3Y)
a=lp=1

The value of Z, can be obtained from the following conjecture:
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Conjecture 3. (Special cases of this conjecture have been formulated independently
by Glasser [13].) Let

wi=a.. . - i _ﬁ*__\f: bje (32)
! 7 k=Lk#i 03 Tk =1 TP TGt

where

a;; >0, a;, 20, b;20, ¢ €R, jk=1,...,N; £=1,...,M. (33)

Then for any integral function f and any parameters satisfying (33),

N +o0
(H[ d:cj)f(wl,wz,...,wN)
i=1"7®

- (}j}%/_‘: dwj)_f(wl,wz,...,wN). (34)

H

The conjecture (34) is true for N = 1 (see e.g. [14], although the result goes
back to at least Boole {15] in the last century) and can easily be verified when N = 2
and M = 0. For the particular function

N
Flwy,. . wy) = ] e /2 (35)
i=t
with
M =0, a;;=a and a;, =9, J£k, jk=1,...,N (36)

the conjecture gives

(llf[l-[: dx,,) exp (— %zizl(zj)Z_gz ) W}}Tﬁ)

1<i<kgN

2 Nf2
= (_(_I_z__) e-agN(N-—l)/Z (37)

-

which is a known result [16]. Furthermore, we have used Monte Carlo integration to
verify (34), up to numerical error of 0.1%, with f given by (35) for (N, M) = (3,0)
and (2,1) with various values of the parameters (33).

To evaluate (31), consider the conjecture with f given by (35) and

t
M=0,N=ZNQ

a=1

amy? (a,ky) = (B, kg)

O(a—1)Na+tke,(B—1D)Na+ks = (38)
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where o, =1,...,tand k, = 1,...,N,_. Use of (30) then gives

Z,= (f[ (uf;)Mﬂ) exp { -5 [i(ma)zNa(Na - 1)

=1 a=1

- X mamﬁNaNﬂ]}'

1€a< Bt

(39

I thank K Aomoto for sending me a copy of [1] and Doron Zeilberger for the time
spent studying the original version of this letter, which led to a counterexample of
the original form of conjecture 2. 1 acknowledge support by the Australian Research
Council.

Note added. Conjecture 1 has now been proved by Zeilberger [17} and by the present author [18].

In [18], the factor []37,(1 — ¥1/X,)(1 — X,/Y>) of the rational function in the constant term
(19) is generalized to [T;- (1 - Y1/ X)(1 - X/ Ya){1 - Y3/X,)...(1 - X¢/Ym) and the constant
term is given in terms of a generalized hypergeometric function involving Jack symmetric polynomials.
Furthermore, an afternative expression for the constant term (26) in Conjecture 2 is derived. These
results are all obtained as limiting cases of the evaluations of the Selberg correlation integrals given by
Kaneko [19].

Conjecture 3 has now been proved by Aomoto, with the restriction ajx = ay; in (33).
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