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LETTER TO THE EDITOR 

Some multidimensional integrals related to 
many-body systems with the l/rz potential 

P J Forrester 
Depanment of Mathematics, La %be University. Bundwra, Victoria 308), Australia 

Received 4 February 1992 

Abatraet An N-dimensional integral evaluated by K Aomolo is shown 10 represent the 
density matrix for an impurity panicle in the 1 f r?. quantum manybody problem on a line. 
Ihe value of the Ndimensional integral representing the same density matrix in periodic 
boundary conditions is conjectured, as is the value of an Ndimensional integral which 
represents a two-poinl correlation function in lhe  system. Also, the partition function 
of a related classical Hamiltonian is evaluated by formulating a conjccture which mens 
that lhe sum of Jacobians of a ceMin change of variables in N-dimensions is a constant. 

Aomoto [l] has recently obtained a closed form evaluation of some two-point corre- 
lations with respect to the measure 

(14 2 (~i~>(zi~~~,...~zjv)) d z i . . .  dziv 

where 

In particular, the correlation 

was evaluated, and the corresponding asymptotic formula for f((,/m, t 2 / m )  
given in the large-N limit with and Fz fixed. In this letter we will provide a physical 
interpretation of (2) in terms of the one-point density matrix of a certain many- 
body quantum system, and use the asymptotic formula to obtain the corresponding 
momentum distribution. The value of the N-dimensional integral representing the 
same density matrix in periodic boundary conditions is conjectured, as is the value 
of another N-dimensional integral which represents a two-pint correlation function 
in the system. In addition, we consider the classical partition function of a system 
related to the quantum Hamiltonian and obtain its evaluation by using a conjectured 
identity regarding a change of variables in N-dimensions. 

We begin with the following observation: 
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Propmiilion 1. The function 

N 
+a,,l(Y; I l ? .  .. rZN)  = exp(-ay2/2X) n ( Y -  Zl)pa,A(zl? . ’  ‘ ,IN) 

k 1  

is an exact wavefunction for the Hamiltonian 

(3) 

where A and g are related by 

(5) x = 1 + (1 + 2g)i .  

This system corresponds to identical quantum particles with coordinates 
q, . . . , zN in a harmonic well interacting via a l/r2 pair potential, and a single 
impurity particle with coordinate y also in a harmonic well (of different strength) 
which does not interact with the other particles. The mass of the impurity particle to 
the other particles is in the ratio (X/2) : 1. 

Proposition 1 is a special case of a more general result for an exact wavefunction 
of the t-species Hamiltonian 

and 

k an exact wavefunction of the Hamiltonian (6) provided 

g, = 2m,(m, 2 - 1) and g-0 =(ma + mg)(m,mp - 1). 
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Remarks. (1) As presented (7) corresponds to the ground state wavefunction since 
it is nodeless for finite values of the potential. However, for mama odd the absolute 
value signs can be removed and (7) still satisfies the Schrijdinger equation with Hamil- 
tonian (6) (proposition 1 is of this type). me wavefunction no longer corresponds to 
the ground state. 
(2) An exact wavefunction corresponding to the periodic version of (6) has been given 
by Krivnov and Ovchinnikov [2] (see also [3]). 

The key to theorem 1 is the identity [4] 

which shows that the apparent three-body terms which result from applying the kinetic 
energy operator of (6) to (3) cancel. We find that the energy eigenvalue corresponding 
to the wavefunction (7) is 

i t t 

a [ N ,  + c ( 4 , ) z N , ( N ,  - 1) + 9 , 4 , N a N 7 ] .  (10) 
a=: 0=l  o=l.).=l 

,=#-I 

In the thermodynamic limit the one-particle density matrix p( yI ,  yz) for the im- 
purity particle of the Hamiltonian (4) in the state (3) is defined as 

where the normalization has been chosen so that p( y, y)  = 1. In the thermodynamic 
limit we require the identical particles to tend to a finite density, q say. This can be 
achieved [5, equation (21)] by choosing 

a = X(rq)'/2N. (12) 

Changing variables f i x l  = X, in (11) and use of (12) and the definitions (3) 
and (2) gives 

The value of (13) can be read off from Aomoto's result [l, theorem of section 41. 
We thus obtain 

where 
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and J,(z)  denotes the Bessel function of order p and r(z) denotes the gamma 
function. The momentum distribution function n(k) is obtained by taking the Fourier 
cosine transform of p( yl, y2) = p( y1 - y2). We find [a] 

where 

Thus the momentum of the impurity particle lies inside the first Brillouin zone 
with peaks as lkl -, "11 for X > 2 (i.e., from (5), g > 0) and at k = 0 for X < 2 (i.e. 
g < 0). In the special case X = 2 the impurity particle becomes indistinguishable 
from the other particles. The density matrix (14) is then that of non-interacting 
fermions in one-dimension and (15) gives the correct Fermi surface. 

Let us now consider the periodic version of the Hamiltonian (4): 

From [2] we know that 

+ A ( y ; z l , . . . , z N )  = n s i n r ( y - z j ) / L  n I s inr r (zk-z j ) /LIA" (17) 

is an exact wavefunction of (16) provided X is given by (5). The density matrix for 
the impurity particle in the state (17) is proportional to the integral 

N 

j = 1  l < j  < k < N  

x JJ \ s i n n ( z k - z j ) / L I A .  (18) 
l < j < k < N  

For X = 2y, y a positive integer, it is straightfonvard to express g(yl, yz) in 
terms of 

where C T { X ,  ,.._ ,XN) denotes the 'constant term' with respect to {Xl,. . . , X N }  (i.e. 
terms independent of {XI,. . . , X N } )  in the multivariable Iaurent expansion of the 
products. Using the van der Monde determinant expansion it is easy to show that 

N 

GI(&,%)  = N ! C  
k=U 

On the basis of (20) and exact numerical data for small N we propose the following 
exact evaluation of (19) for general y E Z+. 
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Conjecture I .  

- - c-, 2Fi(-N,l/Y; - N  - I/Y + 1; Y,/Yz) 

where 

c7 = ( ~ N ) ! / ( Y ! ) ~  

and ,F,(a, b; c; z) denotes the hypergeometric function of Gauss. 

Remarks. 

(2) The conjecture (21) is a reciprocal polynomial in Y,/Y,, which is required from 
the definition (19). 
(3) With Yl = Y2 the hypergeometric function in (21) can be evaluated to give 

(1) The value of c7 is given by the so-called Dyson conjecture [7]. 

In this case the constant term in (19) can be taken with respect to all variables. Its 
value can be obtained from a special case of a theorem of Morris [SI; see also [9-121, 
giving agreement with (23). 

It is also possible to formulate a conjecture which allows the particle density about 
the impurity for the state given by the wavefunction (17), with X an even positive 
integer, to be calculated. By definition, if the impurity particle is at point y, then the 
density at point z, d (z  - y) say, is given by 

'Ib calculate (24) with X = .2y, y E E+ it suffices to calculate 

By using determinant expansions D,,,, and D,,., can readily be evaluated, as too can 
D7,z., firthermore, the constant term with respect to all variables in (25) follows from 
Morns's theorem [SI. On the basis of these exact results and some exact numerical 
data we propose the following result: 



where 

Finally, let us consider a multi-species classical gas with potential energy closely 
related to the Hamiltonian (6). The gas has potential energy 

This potential energy is derived by expanding 

where 

which is one of the steps required in the proof of theorem 1. Use of (9) and some 
further manipulation gives 

(30) 1 
t 

U,  = - a ~ ( m , ) 2 N e ( N ,  - 1) - 2 m a m , N a N ,  . 
[ a = ,  l<o<,Qi  

We desire to evaluate the classical partition function 

?he value of Z, can be obtained from the following conjecture: 
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Conjecjure 3. (Special cases of this conjecture have been formulated independently 
by Glasser [13].) Let 

N M 

(32) 
w . = a . . r . -  ' jk  -E bjt 

J I I J  I .  - e .  
L = l , k # j  J k 1  J J f  

where 

ajj>O,  ajk>O, b j , > O ,  cjfEIW, j , k = l ,  ..., N ;  f?=l, ..., M .  (33) 

Then for any integral function f and any parameters satisfying (33), 

The conjecture (34) is true for N = 1 (see e.g. (141, although the result goes 
hack to at least Bwle [U] in the last centuly) and can easily he verified when N =  2 
and M = 0. Fbr the particular function 

M =0,  ajj = a  and  a j k  =g, j # k ,  j , ~ = l ,  ..., 

the conjecture gives 

which is a hmur!! IP.Sll!f [E!. Rrthermnre, \up h e  lsed Ma!%? Qr!!! i!Eeg%tiQ~ 
verify (M), up to numerical error of 0.1%, with f given hy (35) for (N,  M) = (3,O) 
and (2 , l )  with various values of the parameters (33). 

'Ib evaluate (31), consider the conjecture with f given hy (35) and 
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where a, p = 1 , .  . . , t and I C ,  = 1, . . . , N,. Use of (30) then gives 

I thank K Aomoto for sending me a copy of [l] and Doron Zeilberger for the time 
spent studying the original version of this letter, which led to a counterexample of 
the origina1 form of conjecture 2 I acknowledge support by the Australin Research 
Council. 

Notc &d. Conjecture 1 has now k e n  proved by Zeilberger [17] and by the present author [18]. 
In [18], the factor &(l  - y I / X z ) ( l  - Xz/Yz) of the rational function in the constant term 

(19) ugeneralized to n z l ( l - Y , / X t ) ( l -  Xc /Yz) ( l -Y , /Xl )  ...( l -X t /Y , )  and the constant 
term is given in terms of a generalized hypergeometric function involving Jack qmmetnc polynomials. 
Funhermore, an alternative apression for the constant term (26) in Conjecture 2 IS derived. These 
resului a n  all obtained as limiting cases of lhe evaluations of the Selberg correlation integrals given 
Kaneko [19]. 

Conjecture 3 has now k e n  proved by Aomolo, with the res1"iction a,* = a k ,  in (33). 
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